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EQUATIONS OF DEFORMATION OF AN ELASTIC
INHOMOGENEOUS LAMINATED BODY OF REVOLUTION

A. E. Alekseev and B. D. Annin UDC 539.3

Equations governing deformation of an elastic inhomogeneous laminated body of revolution are pro-
posed. FEach layer is a domain bounded by convex equidistant surfaces of revolution.
Key words: laminated, elastic, body of revolution, Legendre polynomials, equidistant.

Introduction. Various methods for constructing the theory of elastic deformation of multilayered structures
are considered in [1-4].

In the present paper, equations governing elastic deformation of a laminated body of revolution are con-
structed with the use of the results of [5-7] obtained by employing several approximations of each unknown function
in the form of truncated series in Legendre polynomials. This approach allows one to adequately formulate the con-
jugation conditions for stresses and displacements at the interlayer surfaces. Some problems of elastic deformation
of laminated structures [7-9] are solved by the method proposed.

1. Curvilinear Coordinates. Let S be a sufficiently smooth closed convex surface and the origin O of
the coordinate system (z,y, z) lie inside S at the z axis (Fig. 1). The surface S is formed by revolution of a convex
curve L located in the zr plane, where 7 = (22 4 32)'/2. The curve L intersects the z axis at the right angle, and
the curvature radius at each point of the curve L is equal to or greater than p, (Fig. 2).

We write the equation of the curve L in the form

F(v)
dy
Here ~ is the angle between the tangent line and the r axis, F(y) is the support function of the contour L (distance
between the point O and the tangent line). It is obvious that #(v) > 0 for 0 < v < 7. The curvature radius of the
curve L is

r="7r(y) = cosy + F(v) sin~, z=2(7) = ) siny — F(7) cos .

d*F(v)

p=p(y)=FQ)+

We write the equations of the surface S as

r=2xs(8,7) = (dFm

dry

cosy + F(v) sin ’y) cos f3,

dF dF
y=ys(B,7) = (d(j) cosy + F(v) Sirw) sinB,  z=2s(8,7) = d:’) siny — F(v) cos .

We consider the orthogonal curvilinear coordinate system (a, 3,7):

o=t ) = (B cosn 4 (P0) + asing ) cosf, y = vlan i) = (52 cosy + (F(0) + @) s ) sin

(1.1)

dF(v)
dy

z=2z(a,0,7) = siny — (F(v) + «) cosy (>0, 0<y<m, 0< 6 <2n).
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Fig. 1 Fig. 2

The Jacobian of the coordinate transformation J(«, 3,7) does not change its sign:

J(a, 8,7) = D(x,y,2)/D(e, B,7) = (p(7) + @) (7(7) + a siny) = 0.
It follows from (1.1) that the surface o = const is a surface equidistant to the surface S. The unit vectors of the
coordinate lines (see Fig. 1) have the form
k. = (sin~y cos 83, sin~y sin 3, — cos ), ks = (—sin 3, cos 3,0),
k., = (cos~y cos 3, cosy sin 3, —sin ).

2. Equations of the Linear Theory of Elasticity in the Curvilinear System of Coordinates
(s B,7). We formulate the problem of the linear theory of elasticity in an orthogonal coordinate system (a, 3,7).
The stresses 0o, Ta8, Oay, 088, 0y, and 0, satisfy the equations of equilibrium

Ot, Otz ot, 0

dae O Oy
Here, we have

to = HyHp(00oka + 0apks + 0ark),

ty = Holly(0apka + 0ppks + 0pyky),  ty = HaHp(0ayka + 0gyks + 00k,

The strain tensor is determined in terms of the displacement vector U:
k., oU ks o0U k, 0U ko OU kg 0OU
Caa = 5 "7 €88= T " Fmor Cyy = T A 2= 55+,
H, OJ«a Hg 0B H, 0y Hg 08 H, O«
) ko OU  ky 0U ks Uk, 0U (2.1)
ea:_._ —_— =, e - 4 . — _ .
"" H, 9y " H, 0o T H, oy T Hy 0B
The stresses and strains are related by Hooke’s law
Oaa = 2ean + A6, 0p3 =2uegg + e, Oyy = 2y, + Ae,
(2.2)
OaB = 2/1€a8, Oay = 2U€ay, O0gy = 2pueg, €= €naa T €gg + vy,
where A and p are the elastic moduli.
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3. Equations of Elastic Deformation of an Oval Shell of Revolution. We consider a shell of
revolution of thickness 2h that occupies the volume V' and is bounded by the coordinate surfaces oy and asy such
that 0 < ag < ag = a3 + 2h. We introduce the coordinate £ € [—1,1] in the « direction so that o = ag + h§ and
oo = (Oq + 0[2)/2. o X

The unknown functions U, t,, tg, gmond t, can be written iglo the form of series in Legendre polynomials:

U= 0", b= [t]"p(). (3.1)
k=0 k=0
Here py(€) are the orthogonal Legendre polynomials; [U]* and [£;]F are expansion coefficients depending on the
coordinates 3 and -y:

1
1+ 2k : 1+2k
v =1 [upds = / fipy de.
-1

S1
The surface £ = 0 is the mid-surface of the shell. In the orthogonal coordinate system (c, (3,7), the following

relations are valid:

HB:AB(1+§h/Rﬁ)a H, :A’y(lJrgh/R'y);

A dFr d’F
R = A =—coty+F(y)+a, R,=A4,= d2

siny  dy
where Ag and A, are the Lamé coefficients of the mid-surface; Rg and R, are the principal curvature radii of the
mid-surface.
In accordance with [5-7], we approximate the stresses by the truncated series (3.1):

tg = Ay (Nppo/(2h) + 3Mpp1 /(2h?)), =~ Ap(Nypo/(2h) + 3Mp1/(2h%)),

+F( )+a07

fa ~ AﬁA»Y[POp() + APp, + (pz - po)(ka X (PO X ka) - Q/(Qh))]a

AP = (PT - P7)/2, Py=(PT+P7))/2.

1 1
hé h§
N = h_/l (Fagka + aosks + (1+ R—V)amkv)dg, N, h/1 Garkia + (1+ R—ﬂ)amkﬁ + 0y ) dE,

1

Mg = h? /g(aﬁﬁkﬁ +opyky)dE, M, = h2/ E(op ks + 0k dE, (3.2)
-1

1
Q= h/(aaﬁkﬁ + O’a’yk’y) dg, P* = (Uaaka + Uaﬂkﬂ + O'a'yk’y) e=t1’
i)

The displacements U = Uy k, + Ugkg + U,k are approximated by the truncated series (3.1)

ko x (U x ko) = vpo + ¥p1 + (vo — v)p2 + (Av — 9)p3, U ko =Wpo+ AWpy + (Wo — W)pa,
3.3
Av = (v —v7)/2, vy = (vt +v7)/2, AW = (WH —-Ww™)/2, Wo=WT+W7)/2. (3.3)
Here

v =

[\D|F—‘

1 1
[t + ety de o= [eats + kU e e
—1 -1

= (ksUp + Kk, Uy)

1
1
W= —/k: U de, Wi:k:a-U‘ , .
2 £=+1 E==+1
21
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The strains (2.1) are approximated by the truncated series

€aa = €aaP0 + Xaal1, egs = €gsPo + XBsP1, €yy = ExyP0 + X~y~D1, (3.4
3.4
€8y = €3yP0 T XByP1, €aB = €aBP0 T XapP1 T Waph2, €ay = €ayP0 + XayP1 + WayP2-
Here
kﬁ ov 1 k}g 8¢
=AW/h =3Wy—W)/h —= =
Eaa / s Xaa ( 0 )/ ) Epp = A 85 + 5 R XBp = Aﬁ 86
kﬂ, ov 1 k., 0y k, Ov kg Ov

=2 .- W. =2 . -7 2 = — 4+ = . — 3.5
Eyy A, 87 + 5 R, Xvy A, oy €8y + (3.5)

hit A
A; 98 A, 0y’
ko, Ov 1 oW

1k, 00 1 ks Ov k, O ks 09 s
Az 98 Az 9B

— . —_ =, 8O¢5:

1
2 ks A
X TR Ay 98 Ry A, 0y A 98 A, Oy ty e Ay,

k., Ov 1 oW 1

2Xap = 3kg - (vo —v)/h, 2wap = bkg - (Av —)/h, 2e0y = A 8—’)/ + — A, (9 + k.- Av,
v

2ay =3ky - (v0 = v)/h,  2way =5k, - (Av —1p)/h.

Let us express the forces Ng and IN,, and moments Mg and M., in terms of strains and curvatures. We sub-
stitute the strain approximations (3.4) and (3.5) into (2.2) and the expressions for stresses into (3.2). Integrating the
resultant relations with allowance for the orthogonal property of Legendre polynomials, after some manipulations,
we obtain

N = Qh[% <2M5;3 + é (P - kﬁ))ka + (1_—El/2(5ﬁﬁ +vey) + % (Po - ka))’% + QM(EM 31}; Xﬁv)k’ }
N, = Qh[% (2/'1/5/047 + é (Po - k’v))"’a + (%(577 + vegg) + ﬁ (Po - ka)>k7 + 2#(367 3]]; Xﬁv)kﬁ}
2h2 E (3:6)
M; = 3 [(m (XB8 +vX97) + % (AP - koc))kﬁ + 2/@(57’%}7
M, = 2_32 [(% (Xps + VXyy) + ﬁ (AP ka))kv + QNXﬁ'vkﬁ}'

Here E is Young’s modulus and v is Poisson’s ratio,
ko 0Ov 1 oW k k, Ov 1 oW k.-
L Lo Ry el = =%+ = —— + .
Aﬁ a6 Ag 0B h A, Oy Ay Oy h
We find the relation between the external surface forces P* and displacements. We insert the strain ap-
proximations (3.4) and (3.5) into (2.2) and the resultant expressions for stresses into (3.2). Using the properties of
Legendre polynomials for £ = +1, we obtain

Aq = 3u(vg — v)/h, qo = 5u(Av — ) /h,

25;5

3.7
go = EAW/h +vN/(2h), Ag =3E(Wy — W) /h + 3vM/(2h?). 3.7
Here
Aq=(q"—q7)/2, aq=(a"+q)/2, Ag=(9"—97)/2. go=(9"+g7)/2
N=Npg kg+ Ny ky,  M=DMg ks+M, ky,  q°=(0asks+ 00k =1 9" = aa =1
The equations of equilibrium have the form
K 8
AN, AgN,) +2A3A,AP =0,
0 0
85 (A ko X MB) (9’7 (Agka X M,y) + AﬁA,y(kg x Ng+ky x N'y) + ABA'yZh(ka x Py) = 0.
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4. Equations of a Laminated Body Composed of Parallel Layers. We consider the surface Sy formed
by revolution of a convex curve Ly with a support function Fy(y). Curves L; (i = 1,n) with support functions
Fi(y) = Fi—1(7) + 2h; form a family of equidistant surfaces S;, the distance between the neighboring surfaces
S;, S;_1 being equal to 2h;.

Let B be a laminated body composed of monolayers B; (i = 1,n) bounded by the surfaces S;_1,S;. We
denote the quantities that refer to the layer B; by the superscript i. From the algebraic equations (3.7), we obtain
the expressions for (UT)" and (P*)*:

(g%) =3E' (W' — (W™)")/h' —2(g7)" + 30 (N" — M"/h")/(2h"),
(q+)i _ 15Mi((v—)i + ,lpz o ’UZ)/hl + 4(q—)i _ 3(21/(2}7/2)7
(W) = —2(W) + 3WF — K (g™)"/ B+ v (N — 30 /A /(2E°),

(vh)' =4(v7) + 59" — 30" +hi(q7)'/u' — Q') (2u").
The following continuity conditions for stresses and displacements should hold at the interlayer-contact
surfaces S; (i =1,n —1):

(4.1)

(q-‘r)i —)i+1 +)i _ (g—)i-‘rl (4.2)

(v) = ()™, (W)= (W)L (4.3)
Below, we confine our attention to the case where the following stresses are specified at the surfaces Sy and
Sy, of the layered body B:

=(q ; (g

and

(@)'=Qo, (@")"=Qn, (97)'=Go, (¢")" =Gy (4.4)

Equations (4.1)—(4.4) are a system of linear algebraic equations for displacements and stresses at the

interlayer-contact surfaces S; (i = 1,n — 1) and displacements at the front faces Sp and S,. Solving this sys-
tem, we obtain

(g")" = A1Gn + AbGo + Y (a5, WF + ahy N* + aly M*),
k=1
(WH)' = BiGy + BjGo + > (b, W + by N* + bl M*),
k=1

(@")" = CiQun + CiQo + > _(ciyv* + chyp® + 5, Q"),

k=1
(v")' = DiQn + D5Qo + Y _(div* + dyyp* + d5,Q), (4.5)
k=1
n
W, = (W*)" = B{G,, + By Go + Z(b’kak + b N® + b M),

k=1

Wo = (W) = B{G,, + BYGo + Y _ (0, WF + b3 N* + b, M*),
k=1

Vi = ()" = DiQn + D3Qo + Y _(d}yv" + di g + d5.QY),
k=1
Vo=(v7)' = D{Qu + D3Qo + Y (v + d3p" + d,Q").
k=1
Substituting expressions (4.5) into formulas (3.5)—(3.8), after some transformations, we obtain the following
system of partial differential equations:

% (GlX) + % (GQX) = G3X + Gy. (46)
Here Gy (k= 1,...,4) are 10n x 10n matrices and X = (v%, 9!, Wi N* M?) (i = 1,...,n) is the vector of unknown
functions.
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